VDE simulations with M3D-C¹

Stephen C. Jardin, Isabel Krebs, Nate Ferraro

32nd meeting of ITPA MHD Topical Group October 1-3

Naples, Italy

Acknowledgments:

D. Pfefferle

K. Bunkers

J. Artola

C. Sovinec

M. Hoelzl

F. Villone

Outline

• Features of the M3D-C1 code

Benchmark Studies with NIMROD, JOREK, CarMaONL

ITER VDE Studies

Outline

• Features of the M3D-C1 code

Benchmark Studies with NIMROD, JOREK, CarMaONL

ITER VDE Studies

3D Extended MHD Equations in M3D-C1

$$\begin{split} &\frac{\partial \boldsymbol{n}}{\partial t} + \nabla \bullet (\boldsymbol{n} \mathbf{V}) = \nabla \bullet \boldsymbol{D}_{\boldsymbol{n}} \nabla \boldsymbol{n} + \boldsymbol{S}_{\boldsymbol{n}} \\ &\frac{\partial \mathbf{A}}{\partial t} = -\mathbf{E} - \nabla \boldsymbol{\Phi}, \quad \mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{J} = \nabla \times \mathbf{B}, \quad \nabla_{\perp} \bullet \frac{1}{R^{2}} \nabla \boldsymbol{\Phi} = -\nabla_{\perp} \bullet \frac{1}{R^{2}} \mathbf{E} \\ &n \boldsymbol{M}_{i} (\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \bullet \nabla \mathbf{V}) + \nabla \boldsymbol{p} = \mathbf{J} \times \mathbf{B} - \nabla \bullet \boldsymbol{\Pi}_{i} + \mathbf{S}_{\boldsymbol{m}} \\ &\mathbf{E} + \mathbf{V} \times \mathbf{B} = \frac{1}{ne} (\mathbf{R}_{c} + \mathbf{J} \times \mathbf{B} - \nabla \boldsymbol{p}_{e} - \nabla \bullet \boldsymbol{\Pi}_{e}) - \frac{m_{e}}{e} (\frac{\partial \mathbf{V}_{e}}{\partial t} + \mathbf{V}_{e} \bullet \nabla \mathbf{V}_{e}) + \mathbf{S}_{CD} \\ &\frac{3}{2} \left[\frac{\partial \boldsymbol{p}_{e}}{\partial t} + \nabla \bullet (\boldsymbol{p}_{e} \mathbf{V}) \right] = -\boldsymbol{p}_{e} \nabla \bullet \mathbf{V} + \frac{\mathbf{J}}{ne} \bullet \left[\frac{3}{2} \nabla \boldsymbol{p}_{e} - \frac{5}{2} \frac{\boldsymbol{p}_{e}}{n} \nabla \boldsymbol{n} + \mathbf{R}_{c} \right] + \nabla \left(\frac{\mathbf{J}}{ne} \right) : \boldsymbol{\Pi}_{e} - \nabla \bullet \mathbf{q}_{e} + \boldsymbol{Q}_{\Lambda} + \boldsymbol{S}_{eE} \\ &\frac{3}{2} \left[\frac{\partial \boldsymbol{p}_{i}}{\partial t} + \nabla \bullet (\boldsymbol{p}_{i} \mathbf{V}) \right] = -\boldsymbol{p}_{i} \nabla \bullet \mathbf{V} - \boldsymbol{\Pi}_{i} : \nabla \mathbf{V} - \nabla \bullet \mathbf{q}_{i} - \boldsymbol{Q}_{\Delta} + \boldsymbol{S}_{iE} \\ &\mathbf{R}_{c} = \eta ne \mathbf{J}, \qquad \boldsymbol{\Pi}_{i} = -\mu \left[\nabla \mathbf{V} + \nabla \mathbf{V}^{\dagger} \right] - 2(\mu_{c} - \mu)(\nabla \bullet \mathbf{V}) \mathbf{I} + \boldsymbol{\Pi}_{i}^{GV} \qquad \mathbf{q}_{e,i} = -\kappa_{e,i} \nabla \boldsymbol{T}_{e,i} - \kappa_{\parallel} \nabla_{\parallel} \boldsymbol{T}_{e,i} \end{aligned}$$

Blue terms are 2-fluid terms. Also, now have impurity and pellet models for disruption mitigation. NOT reduced MHD.

 $\mathbf{\Pi}_e = (\mathbf{B}/B^2)\nabla \bullet \left[\lambda_h \nabla \left(\mathbf{J} \bullet \mathbf{B}/B^2\right)\right], \qquad Q_{\Delta} = 3m_e (p_i - p_e)/\left(M_i \tau_e\right)$

M3D-C¹ uses unique 3D high-order finite elements

- M3D-C¹ uses high-order curved triangular prism elements
- Within each triangular prism, there is a polynomial in (R,ϕ,Z) with 72 coefficients

- The solution *and* 1st *derivatives* are constrained to be continuous from one element to the next.
- Thus, there is much more resolution than for the same number of linear elements

Also, implicit timestepping allows for very long time simulations

Frror ~ h⁵

M3D-C¹ has been extended to 3 regions for RW*

*Ferraro, et al. ,Phys Plasma**23** 056114 (2015)

Outline

Features of the M3D-C¹ code

Benchmark Studies with NIMROD, JOREK, CarMa0NL

ITER VDE Studies

Benchmark M3D-C¹, NIMROD & JOREK

- Compare results of all three codes for the same VDE case
 - Based on NSTX VDE discharge #139536*
 - Axisymmetric rectangular resistive wall that all codes can handle
- Linear, 2D axisymmetric nonlinear & 3D nonlinear simulations
 - Compare evolution, wall currents & forces

*D. Dfefferle, et al.: Phys. Plasmas 25 (2018)

Linear VDE growth vs. η_{wall} depends on T_{edge}

- Small η_{wall} , small T_{edge} : VDE growth rate $\sim \eta_{\text{wall}}$
- Large η_{wall}, large T_{edge}:
 VDE slowed down by response currents in open field line region

Linear VDE growth vs. η_{wall} depends on T_{edge}

Toroidal current density eigenfunctions

- Small η_{wall} , small T_{edge} : VDE growth rate $\sim \eta_{wall}$
- Large η_{wall} :, large T_{edge} : VDE slowed down by response currents in open field line region

Linear benchmark with NIMROD

M3D-*C*¹

NIMROD

Poloidal Direction

Tri. C¹ Reduced₁Quintic FE

High. Order quad C⁰ FE

Toroidal Direction

Hermite Cubic C¹ FE

Spectral

Magnetic Field

$$\mathbf{B} = \nabla \psi \times \nabla \varphi - \nabla_{\perp} f' + F \nabla \varphi$$

$$\mathbf{B} = B_r \hat{R} + B_z \hat{Z} + B_\omega \hat{\varphi}$$

Velocity Field

$$\mathbf{V} = R^2 \nabla U \times \nabla \varphi + \omega R^2 \nabla \varphi + R^{-2} \nabla_{\perp} \chi$$

$$\mathbf{V} = V_r \hat{R} + V_z \hat{Z} + V_{\varphi} \hat{\varphi}$$

Coupling to Conductors

same matrix

Separate matrices w interface

M3D-C¹ 3 regions, thick wall

NIMROD vacuum region

NIMROD plasma region

Linear benchmark with NIMROD (preliminary)

- Growth rates differ by ~ 30%
- Slight differences in diffusion parameters

I. Krebs K. Bunkers, C. Sovinec

Linear benchmark with JOREK-STARWALL

- Comparison of linear phase of 2D nonlinear simulations
 - To avoid negative temperatures from developing, we use an offset in resistivity calculation so open-field-line resistivity is not constrained by T_{edge} : $\eta = \eta_{spitzer}(T_e T_{off})$

8 orders variation in resistivity from center to wall !!!

- Differences between JOREK & M3D-C¹/NIMROD models:
 - JOREK has full MHD model, but uses *reduced MHD* for VDEs
 - No ideal wall BCs at domain boundary
 - Only normal velocity component vanishes at resistive wall

Progress on VDE benchmark between M3D-C1 & JOREK

linear phase of 2D nonlinear simulations

- Based on simplified NSTX VDE case
- Difference between linear growth rates ≤ 9%

Outline

Features of the M3D-C¹ code

Benchmark Studies with NIMROD, JOREK, CarMaONL

ITER VDE Studies

2D nonlinear ITER VDE simulation

- Based on standard 5.3 T / 15 MA ITER scenario
- Used <u>realistic parameters</u> for wall resistivity, plasma resistivity, plasma mass (no scaling: 250,000 τ_A !!)
- 2D benchmark with CarMaONL in progress
 - Comparison of 2D evolution & wall currents/forces
 - with ITER first wall as resistive wall
 - with first wall as boundary & vessel wall as resistive wall
- Coupling M3D-C¹ & CARIDDI (3D conducting structures)
 - 2D M3D-C¹ simulations
 - 3D M3D-C¹ simulations

Poloidal unstructured mesh used in ITER calculation

L/R time from simulation without plasma

- Simulation with constant loop voltage applied at t=0 & no plasma
- Wall resistivity adjusted to give correct L/R time

2D nonlinear ITER VDE simulation with single wall

Poloidal Magnetic Flux

2D nonlinear ITER VDE simulation

Thermal Quench at $t = 110 \text{ ms} (q_a = 2)$

Thermal quench:

 $ightharpoonup \kappa_{\perp}$ increased to 10^6 m²/s so that $T_e(0) \sim 25$ eV in the presence of Ohmic heating

Vertical Force on Wall

Vertical wall force @ t=130 ms

Halo current at time of maximum force

Halo width self-consistently determined by $\kappa_{\parallel}/\kappa_{\perp}$

 \rightarrow Halo width & temperature at LCFS determined by T_{edge} & $\kappa_{\parallel}/\kappa_{\perp}$

Dependence of Maximum Vessel Force on Post-TQ Te

Higher post-TQ electron temperature led to slower current decay and larger vertical force on vessel.

Ongoing and Future Work

- Features of the M3D-C¹ code
 - Validate pellet and radiation models with DIII

- Benchmark Studies with NIMROD, JOREK, CarMa0NL
 - Continue these to 2D NL and 3D NL

- ITER VDE Studies
 - 2D parameter studies on $\kappa_{\parallel}/\kappa_{\perp}$, TQ time
 - Thick Vessel with varying resistivity
 - Couple to Cariddi (3D conducting structures
 - Fully 3D calculations (with SPI)